首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   190篇
  免费   15篇
  国内免费   14篇
测绘学   9篇
大气科学   48篇
地球物理   57篇
地质学   49篇
海洋学   50篇
天文学   4篇
自然地理   2篇
  2023年   1篇
  2022年   2篇
  2021年   4篇
  2020年   5篇
  2019年   3篇
  2018年   17篇
  2017年   16篇
  2016年   12篇
  2015年   12篇
  2014年   8篇
  2013年   9篇
  2012年   15篇
  2011年   18篇
  2010年   18篇
  2009年   13篇
  2008年   5篇
  2007年   15篇
  2006年   9篇
  2005年   7篇
  2004年   3篇
  2003年   7篇
  2002年   5篇
  2001年   3篇
  2000年   2篇
  1999年   3篇
  1998年   1篇
  1997年   2篇
  1993年   1篇
  1991年   1篇
  1986年   1篇
  1979年   1篇
排序方式: 共有219条查询结果,搜索用时 15 毫秒
21.
In this study, the derivative analysis using the derivative of drawdown with respect to log‐time was utilized to determine candidates for hydraulic conductor domains (HCDs). At a 500‐m deep borehole in the study site, the fractured rocks crossing the borehole were first classified in fractured and nonfractured zones by core logging and geophysical loggings, such as acoustic televiewing, density, and flow loggings. After conducting the hydraulic tests such as constant head withdrawal and recovery tests at the fractured zones and the nonfractured zones, the derivative analyses were carried out, of which the results were evaluated to determine the candidates for HCDs. For the nonfractured zones, the diagnostic plot has only a big hump indicating poor connection of the background fractures to the permeable geologic media, while those of the candidates for HCDs show various flow regimes. On the basis of these results, the candidates for HCDs among the fractured zones were determined. From discussion on the results, the combination of the spacing analysis and derivative analysis following a hydraulic test is recommended for determining the candidates for HCDs rather than other geophysical loggings.  相似文献   
22.
Climate change detection, attribution, and prediction were studied for the surface temperature in the Northeast Asian region using NCEP/NCAR reanalysis data and three coupled-model simulations from ECHAM4/OPYC3, HadCM3, and CCCma GCMs (Canadian Centre for Climate Modeling and Analysis general circulation model). The Bayesian fingerprint approach was used to perform the detection and attribution test for the anthropogenic climate change signal associated with changes in anthropogenic carbon dioxide (CO2) and sulfate aerosol (SO42-) concentrations for the Northeast Asian temperature. It was shown that there was a weak anthropogenic climate change signal in the Northeast Asian temperature change. The relative contribution of CO2 and SO42- effects to total temperature change in Northeast Asia was quantified from ECHAM4/OPYC3 and CCCma GCM simulations using analysis of variance. For the observed temperature change for the period of 1959-1998, the CO2 effect contributed 10%-21% of the total variance and the di  相似文献   
23.
Comprehensive flood prevention plans are established in large basins to cope with recent abnormal floods in South Korea. In order to make economically effective plans, appropriate design rainfalls are critically determined from the rainfall depth-frequency curves which take the occurrence of abnormal floods into consideration. Conventional approaches to construct the rainfall depth-frequency curves are based on the stationarity assumption. However, this assumption has a critical weak aspect in that it cannot reflect non-stationarities in rainfall observations. As an alternative, this study suggests the non-stationary Gumbel model (NSGM) which incorporates a linear trend of rainfall observations into rainfall frequency analysis to construct the rainfall depth-frequency curves. A comparison of various schemes employed in the model found that the proposed NSGM permits the estimation of the distribution parameters even when shifted in the future by using linear relationships between rainfall statistics and distribution parameters, and produces more acceptable estimates of design rainfalls in the future than the conventional model. The NSGM was applied at several stations in South Korea and then expected the design rainfalls to increase by up to 15–30% in 2050.  相似文献   
24.
Aerosol optical thickness (AOT) was retrieved from the Geostationary Ocean Color Imager (GOCI) on board the Communication, Ocean, and Meteorological Satellite (COMS) for the first time. AOT values were retrieved over the ocean at a spatial scale of 0.5 × 0.5 km2 by using the look-up table (LUT)-based separation technique. The radiative transfer model (RTM) was used for different models of atmosphere-ocean environmental conditions, taking into account the realistic variability of scattering and absorption. Ocean surface properties affected by whitecaps and pigment content were also taken into account. The results show that the radiance observed by the GOCI amounts to only 5% of the radiation that penetrated the ocean and, consequently, 95% of the radiation is scattered in the atmosphere or reflected at the ocean surface in the visible wavelengths longer than 0.6 ìm. Within these wavelengths, radiance variations at the top of atmosphere (TOA) due to pigment variations are within 10%, while the radiance variation due to wind speed is considerably higher. For verification of GOCI-retrieved AOTs, comparison between GOCI and ground-based sunphotometer measurement at Gosan, Korea (126.10°E, 33.23°N)) showed good correlation (r = 0.99). The GOCI observations obtained by using the proposed technique showed promising results for the daily monitoring of atmospheric aerosol loading as well as being useful for environmental supervisory authorities.  相似文献   
25.
The Common Land Model (CLM) is one of the most widely used land surface models (LSMs) due to the practicality of its simple parameterization scheme and its versatility in embracing a variety of field datasets. The improved assessment of land surface water and energy fluxes using CLM can be an alternative approach for understanding the complex land–atmosphere interactions in data‐limited regions. The understanding of water and energy cycles in a farmland is crucial because it is a dominant land feature in Korea and Asia. However, the applications of CLM to farmland in Korea are in paucity. The simulations of water and energy fluxes by CLM were conducted against those from the tower‐based measurements during the growing season of 2006 at the Haenam site (a farmland site) in Korea without optimization. According to the International Geosphere–Biosphere Programme (IGBP) land cover classification, a homogeneous cropland was selected initially for this study. Although the simulated soil moisture had a similar pattern to that of the observed, the former was relatively drier (at 0·1 m3 m?3) than the latter. The simulated net radiation showed good agreement with the observed, with a root mean squared error (RMSE) of 41 W m?2, whereas relatively large discrepancies between the simulation and observation were found in sensible (RMSE of 66 W m?2) and latent (RMSE of 60 W m?2) heat fluxes. On the basis of the sensitivity analysis, soil moisture was more receptive to land cover and soil texture parameterizations when compared to soil temperature and turbulent fluxes. Despite the uncertainty in the predictive capability of CLM employed without optimization, the initial performance of CLM suggests usefulness in a data‐limited heterogeneous farmland in Korea. Further studies are required to identify the controls on water and energy fluxes with an improved parameterization. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
26.
We investigated the ecological significance of alkaline phsophatase (APase) and alkaline phosphatase-hydrolyzable phosphorus (APHP) in the northern part of Gamak Bay, Korea. APase activity was detectable throughout the year, and dissolved inorganic phosphorus (DIP) concentration and APase activity are highly correlated and can be regarded as an indicator of DIP-limiting conditions. Also, a strong linear positive correlation between APase activity and Chl a concentration indicated that the major part of APase activity may have been induced by phytoplanktons. The APHP proportion in dissolved organic phosphorus (DOP) was above ca. 30% from winter to spring and below ca. 15% from summer to autumn due to freshwater discharge and uptake by phytoplankton. APHP may play an important role in species competition in coastal area such as northern part of Gamak Bay where DIP is limiting. Thus, APase induction by phytoplanktons may be ecologically significant, allowing dominance by these organisms under DIP-limiting conditions.  相似文献   
27.
Preventing the penetration of rainwater into a landfill site is the main purpose of the final cover in landfill sites. Conventional designs of landfill covers use geotextiles, such as geomembrane and geosynthetic clay liners, and clay liners to lower the permeability of the final cover of landfill sites. However, differential settlement and climatic effects in landfill sites instigate crack development or structural damage inside the final cover. This study therefore investigates the field applicability of a self-recovering sustainable liner (SRSL) as an alternative to the landfill final cover. The SRSL utilizes the precipitation reaction of two chemical materials to form precipitates that fill the pores and thereby lower the overall permeability of the liner. To examine the field applicability of the SRSL system, uniaxial compression tests and laboratory hydraulic conductivity tests were performed under various climatic effects such as wet/dry and freeze/thaw processes. Furthermore, field-scale hydraulic conductivity tests were performed with intentionally induced cracks to demonstrate the self-recovery performance for practical applications. Extensive laboratory and field test results confirmed the capability of the SRSL final cover system to fulfill the strength and hydraulic conductivity requirements, even in harsh field conditions.  相似文献   
28.
To better constrain sampling strategies for observing biologically sensitive parameters in ground water, we vigorously pumped for 120 h a lightly pumped well completed in a confined glacial aquifer while observing how various physical and chemical parameters evolve in the water produced. The parameters commonly monitored when sampling a well stabilized within about an hour, after 5 wellbore volumes were produced; these parameters include temperature, pH, dissolved oxygen, oxidation-reduction potential (Eh), and electrical conductivity. The concentrations of ferrous iron, sulfide, and sulfate and various biological or biologically sensitive parameters, including the concentrations of dissolved hydrogen and methane, direct cell counts, and the microbial community profile, in contrast, required more than 8 h or 36 well volumes to stabilize. We interpret this result to mean that the zone of influence of the wellbore on biologic processes in the aquifer extends beyond the commonly recognized zone where physical properties are affected. A second period of adjustment of these biologically sensitive parameters began after about 50 h of pumping, following displacement of 230 wellbore volumes, and continued to the end of the experiment. During this period, the cell density and the composition of the microbial community suspended in the water samples changed. This finding indicates that the microbial community in and near the wellbore changed in response to pumping and the changes affected aspects of the composition of water produced from the well. The study demonstrates the importance of allowing adequate pumping time when sampling ground water for the analysis of biologically sensitive parameters.  相似文献   
29.
A three‐dimensional transmitting boundary is formulated in the Cartesian co‐ordinate system. It is developed for the dynamic soil–structure interaction problems of arbitrary shape foundations in laterally heterogeneous strata overlying rigid bedrock. Dynamics of a rectangular rigid surface foundation on a homogeneous stratum is analysed by a hybrid approach in which the finite region including foundation is modelled by the conventional finite element method and the surrounding infinite region by the newly developed transmitting boundary. To demonstrate its strength, the present method is applied to a rectangular foundation in a horizontally heterogeneous ground consisting of two distinct regions divided by and welded along a vertical plane. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   
30.
Recently, the accumulation of plastic debris in the marine environment has become a great concern worldwide. Although plastics are biologically and chemically inert, plastic debris has been suspected of causing adverse effects on ecosystems due to the increase in reactivity by size reduction and/or micropollutants associated with plastics. Because of the high sorption capacity of microplastics toward organic micropollutants, it is suspected that microplastics may play roles in the distribution and fate of micropollutants. In order to quantitatively evaluate the “net flow” of environmental contaminants in water-plastic-organism systems, a fugacity analysis was conducted using concentrations of polycyclic aromatic hydrocarbons (PAHs) in open oceans and in polyethylene as a representative material of plastic debris. Ratio of fugacity in polyethylene to that in seawater showed a decreasing trend with increasing partition coefficient between polyethylene and seawater (KPE/sw). This indicates that phase equilibrium between polyethylene and seawater is not attained for higher molecular weight PAHs. Disequilibrium of high molecular weight PAHs suggests that transfer from seawater to plastic debris is thermodynamically driven and the role of plastic debris as a vector to transfer them to living organisms would be minimal. However, additives may slowly migrate from plastics into the environment causing potentially serious effects on ecosystems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号